Quick T1 Determination

Determine the longest T1 for the sample (more details of this operation can be found in handout UVU438):

Once you have determined the pw90 for your sample,

\[\text{mp}(1,2) \]

\[\text{jexp2} \]

dot1 <rt> NOTE: The next three items are the answers to the questions posed by the dot1 macro) and are a good starting point for small organic molecules.

- Minimum T1 expected: \(0.5 \) <rt>
- Maximum T1 expected: \(5 \) <rt>
- Number of scans: \(1 \) <rt>

As the spectra accumulate, use **dssh** to view them. You can terminate the experiment with **aa** when you have determined the longest T1 of interest. The longest T1 of interest occurs when the last peak you are interested in goes through a null and becomes positive. You should interpolate when the peak crosses zero; this value is \(\tau_{\text{longest}} \).

\[\tau_{\text{longest}}/0.69 = T1_{\text{longest}} \]

INTEGRATION

When optimizing the delay for integration, at + d1 = \(5 \times T1_{\text{longest}} \). Solve for d1. Nt should be at least 4.