¹H{³¹P} – Phosphorus Decoupled Proton NMR on the UI400 or U500

Decoupling 31P from 1H on the UI400 or U500 is easily accomplished with the standard QUAD probe. This handout outlines a procedure to acquire ${}^{1}H{}^{31}P{}$ spectra, where the phosphorus decoupling can be selective or non-selective. If you want to run this experiment on the U400 or VXR500 a cabling change is required. Check with Vera Mainz before attempting to run this experiment on any instruments EXCEPT the UI400 or U500.

Preliminaries:

- Insert, Lock and Shim as usual.
- If you are doing variable temperature work AND want to acquire ${}^{1}H{}^{31}P{}$ spectra, check with Lab staff as the temperature change might affect the efficiency of the decoupling.

Acquire Preliminary Spectra:

NOTE: Even if you've acquired this data before, you need to run them again.

jexp1

join experiment 1

Setup and run a standard ¹*H experiment.*

jexp2

join experiment 2

Setup and run a standard ³¹P experiment. Make sure you can see all the ³¹P peaks you plan to decouple.

1) If you want to decouple all 31 P peaks at the same time, place the left cursor at the center of the region of interest and type movetof <rtn>. Record tof=_____.

2) If you plan to acquire selectively decoupled ${}^{1}H{}^{31}P{}$ spectra, place the cursor on the center of a ${}^{31}P$ peak of interest, type movetof. Record tof=_____.

If you have more than one ³¹P peak to decouple, you need to reload the *FILE-31P-REFN* fid and wft for each frequency. After the wft, place the cursor on the center of the ³¹P peak of interest, type movetof. Record tof=______.

Continue to repeat this step for each ³¹P peak of interest.

NOTE: You need to reload the reference ³¹P spectrum each time before you execute another movetof command!!

${}^{1}H{}^{31}P{}$ Decoupling Setup – decoupling all ${}^{31}P$ peaks at the same time:

jexp3 join experiment 1 mp(1,3) move the 1H parameters from exp1 to exp3 xdec sets up for 1H{31P} decoupling Enter nucleus to be decoupled (e.g. P31): P31<rtn>

Check that dn=P31

dof=____

set the tof value from the ³¹P spectrum, above; if you have multiple values, you can do them one at a time or in an array.

nt=1, if possible, but the minimum number of scans needed ga

NOTE: To acquire a P31-coupled and decoupled array (so you can compare/plot them easily) set

dm='nnn','nny' gain='y'

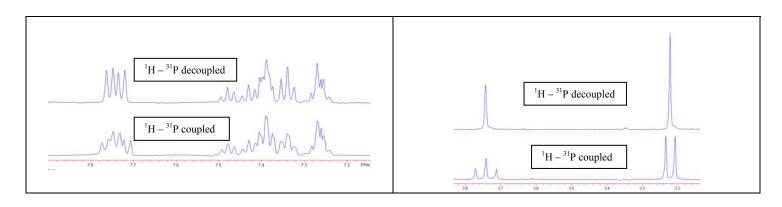
dssa or dssh pl('all') pscale page Turns off the autoscale gain function for arrays display arrayed data stacked vertically or horizontally plot stacked data

¹H{³¹P} Decoupling Setup – decoupling ³¹P peaks one at a time:

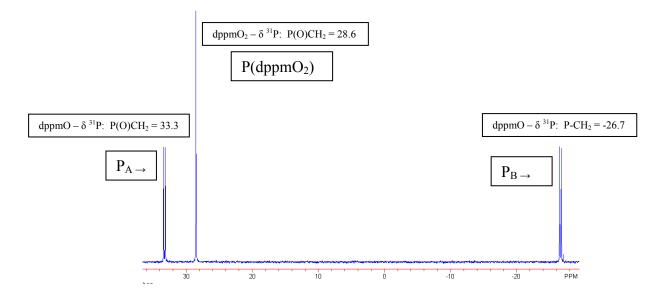
Use the same setup as above, with the following changes: jexp3 join experiment 1 mp(1,3) move the 1H parameters from exp1 to exp3 xdec sets up for 1H{31P} decoupling Enter nucleus to be decoupled (e.g. P31): P31<rtn>

Check that dn=P31 dof=_____ set the tof value from the ³¹P spectrum, above; if you have multiple values, you can do them one at a time or in an array. dm='nny'

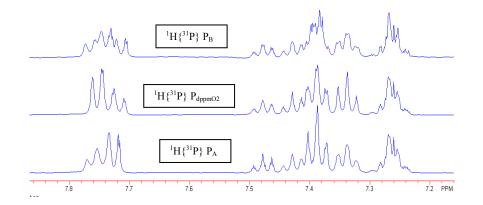
dmm='c'
dmf=250
dpwr=20 (This may change depending on how close your peaks are to each other and the JPP coupling constant. Check with Lab staff if you have problems.)
nt=1, if possible, but the minimum number of scans needed
ga

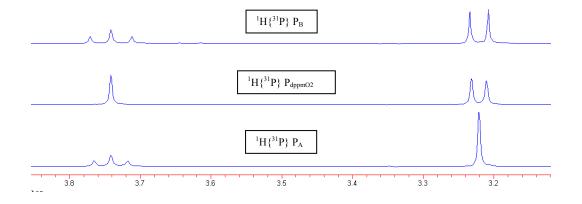

Example: Bis(diphenylphosphino)methane monoxide (dppmO) – Ph₂P-CH₂-(Ph₂)P=O (data from *Inorg. Chem.* v19(7), **1980**, 1982-1987):

 $^{2}J_{P-CH} = <0.5$ Hz; $^{2}J_{P(O)CH} = 12.5$ Hz


 δ^{-1} H: CH₂ = 3.06 (doublet) (in my data, the doublet at ~ δ 3.22 is the CH₂ from dppmO; the triplet at ~ δ 3.74 is the CH₂ from dppmO₂)

 $δ^{31}$ P: P-CH₂ = -28.4 (in my data, found at -26.7ppm) $δ^{31}$ P: P(O) CH₂ = 27.7 (in my data, found at 33.3ppm) $δ^{31}$ P dppmO₂: P(O) CH₂ = 24.2 (in my data, found at 28.6ppm)


VVM 010CT09UD PFM 16May00CD dppmO – Ph₂P-CH₂-(Ph₂)P=O All ³¹P Peaks Decoupled



$^{31}P\{^1H\}$ Spectrum dppmO and dppmO_2

dppmO – Ph₂P-CH₂-(Ph₂)P=O ¹H Spectra showing ³¹P Peaks Decoupled One at a Time

