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Topics to be covered

Applications of Heterogeneous Catalytic
Reductions

Simple Reductions
Differential reductions
hydrogenolysis

Equipment

Tour of the High Pressure Lab



Recommended Books:

Heterogeneous Catalysis for the Synthetic
Chemist

Robert L Augustine (1996)
Good for theory, kinetics, applications &
Equipment
Practical Catalytic Hydrogenation,
Techniques and Applications
Morris Freifelder 1971
Alchemic secrets of success



Recommended References

> Catalytic Hydrogenation over Platinum
Metals

o P. N. Rylander 1967



Factors That Impact Reduction
Choices

~unctional group reduced

_ocal structure

Presence of other reducible groups
Products that act as inhibitors/poisons

Desirabllity of hydrogenolysis as one of the
actions

Equipment limitations




Olefins

Under mild conditions, ease of reduction can be
correlated inversely with degree of substitution
(except when conjugated)

RHC=CH2 , RHC=CHR > R,C=CHR > R,C=CR,

Many different catalysts reduce double bonds.

The key to differentiating reduction of double
bonds is monitoring equivalents hydrogen
consumed.



Olefins continued

> Bond migrations prior to reduction are
common and may result in scrambling of
nearby stereochemistry (Requires H,!)

> Certain groups act as directors



Bond Migration: More with Ni, Pd,
less with Pt
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AcCCeSS to catalyst surface
Influences stereochemistry
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Catalyst approach: OH blocks Pd
but favors Ni




Hydrogen Addition Is from the
Least Hindered Side




Selective Reduction of Polyenes

> Pd and Ni often cause bond migration
> Greatly influenced by local structure

> Conjugated di- and polyenes give mixtures
except in special cases
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Catalyst Addition Is in Equilibrium
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Effect of Solvent and Pressure on
Stereochemistry
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Solvent Percent cis Product

Low H2 Press High H2 Press
n-Hexane {( 48
DMFE 86 45
tert-Butyl Alcohol 01 48
Ethanol 78 48
0.3 N HCl/Ethanol 91 30

0.5 N'Na®H 10) 50



Alkyne Reduction

> Usual catalysts: Lindlar's (Pd/CaCQO,)
Pd/BaS0O4, Nickel boride, Cu and Co.

> Selectivity for cis reduction: Pd >Rh >Pt >
Ru> Ir

> Quinoline commonly used as a modifier.



Reduction of Alkynes: a Game of
Relative Rate

G
Pd-Pb/CaCOs; N
- 95%
Hexane

26 C, 1 Atm

Slow

\

o8



Alkyne Reduction

Lindlar's Catalyst/ Quinoline
HO
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Aromatic Reduction

> Catalyst Activity: Rh > Ru > Pt > Ni > Pd
> Co

> Ru minimizes C-O and C-N
hydrogenolysis.

> C-Halide bonds do not survive aromatic
reductions

> Correct choice of conditions allows other
functionalities to survive



Aromatic Reduction
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Phenols to Cyclohexanones: thin
film on catalyst modifies products
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Ring Differentiation in Aromatic
Reduction
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Ring Differentiation in Aromatic
Reduction
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Ring Differentiation in Aromatic
Reduction
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Other Aromatic Reductions




Other Aromatic Reductions
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Heterocyclic Reductions
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Some Functional Group
Reductions: faster than Aromatic

R-NO; > R-NH,
R-CN > R-CH,NH,
i - OH
)]\ )<H

j\ = )O;H




Reductive Amination
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Reductive Amination

Kes advantage of relative ease of imine
uction.

> la
Imi

Kes advantage of equilibrium between
ne and ketone In presence of an amine.

> Some aldehydes produce significant

oyproducts of diamine and polymers.

> Use of one eg. acid improves yield of

orimary amine



Reductive Amination

> Raney Nickel is the catalyst of choice

> Palladium, Rhodium and Platinum do not
nerform as well as RaNi

> Ruthenium on carbon has been used
successfully

> Use of 1 eq. ammonium acetate or HOAc
significantly improves results

> Aromatic Halides have been reported to survive
conditions (using Rhodium)

> Can be done on sensitive aromatics, like furan.




Reductive Amination
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Reductive Amination
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Hydrogenolysis

Reductive cleavage of sigma bonds:
C-C, C-N, C-O, C-S and others

Choice of catalyst, structure of substrate,
and solvent greatly influence whether
double bond reduction continues on to
hydrogenolysis.



Carbon-Carbon Hydrogenolysis
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Carbon-Carbon Hydrogenolysis
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Halogen Weakens Opposite bond
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C-O Hydrogenolysis

> Generally benzyl alcohols, ethers and
esters

> Often facilitated by acid

> Freguently occurs in competition with
aromatic ring reduction

> Palladium favors hydrogenolysis while
platinum favors ring reduction.



C-O Hydrogenolysis
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Contrasting Pt with Pd
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C-O Hydrogenolysis
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C-O Hydrogenolysis
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Carbonyl Hydrogenolysis
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C-N Hydrogenolysis
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C-N Hydrogenolysis
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Parr Shaker Demo and
HP Lab Tour



Hydrogenolysis: Carbon-Carbon
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