HOMODECOUPLING

This handout contains instructions on how to set up a homodecoupling experiment. It originally comes from the U400 Checkout Handout, so should look familiar. Note that this handout guides you through homodecoupling on one specific sample. Pay close attention to the calibration of dpwr, as that is the parameter that will be most sample dependent.

The basic steps for a homodecoupling experiment, discussed in much detail below, are:

- 1. Select Standard Parameters and Acquire a Preliminary Spectrum
- 2. Move Homodecoupling Experiment to exp2
- 3. Set Homodecoupling Parameters
- 4. Determine Optimum Decoupling Power (dpwr)
- 5. Set up the Homodecoupling Experiment
- 6. Start the Homodecoupling Experiment

¹H Homodecoupling, 0.1% Ethylbenzene in CDCl₃

Select Standard Parameters and Acquire a Preliminary Spectrum

LC Main Menu LC 2:Setup LC 1:H1,CDCl3 nt=1 <rtn> gain? <rtn> (should say <i>gain = Not Used</i>)</rtn></rtn>	select main menu select setup menu select standard parameters for H1 nucleus in CDCl3 set number of transients gain='n' enables autogain
ga <rtn></rtn>	start acquisition and wit when complete
When acquisition is complete,	
f full aph <rtn> dscale <rtn> nl rl(7 26n) <rtn></rtn></rtn></rtn>	display full spectrum to full screen and autophase display scale reference the solvent to 7.26 ppm
f <rtn></rtn>	display full spectrum
Move Homodecoupling Experiment to exp2	
delexp(2) <rtn> (optional)</rtn>	delete experiment 2
cexp(2) <rtn> (if exp2 does not exist, <i>i.e.</i>, deleted)</rtn>	create experiment 2
jexp2 <rtn></rtn>	join experiment 2
mf(1,2) <rtn></rtn>	move fid with parameters from exp1 to exp2
wft <rtn> (NOTE: It is necessary that you do the wft</rtn>	now and not later.)
Set Homodecoupling Parameters	
homo='y' <rtn></rtn>	select homonuclear decoupling mode
dm='nny' <rtn></rtn>	set decoupler to "on" only during acquisition –
gives	decoupled spectra without NOE
gain='y' <rtn></rtn>	turn off autogain
gain? <rtn></rtn>	show gain value selected by autogain during the

NOTE: There are two reasons for setting gain='y' now. First, the arrayed experiments that you will be doing below will not accept autogain (*i.e.*, gain='n'). Second, this will avoid repeating the auto gain setting at the beginning of each acquisition in the subsequent experiments.

Determine Optimum Decoupling Power (dpwr)	
dscale <rtn></rtn>	display scale
Expand around the triplet, then place the cursor at th	e center of signal and enter:
nl <rtn></rtn>	select nearest line
sd <rtn></rtn>	set decoupler offset frequency (dof) for the triplet
nt=4 <rtn></rtn>	set number of transients
dpwr=28,30,32,34,36 <rtn></rtn>	set up an array for <i>dpwr</i>
da <rtn></rtn>	display the array and double-check the setting
ga <rtn></rtn>	start acquisition (will wft and display each spectrum sequentially as it is completed)
When acquisition is complete,	
ds(1) <rtn></rtn>	display first spectrum in the array (<i>i.e.</i> , dpwr=24)
Expand around the quartet, then enter:	
ai <rtn></rtn>	select absolute intensity mode
vsadj <rtn></rtn>	adjust vertical scale
vs=vs/2 <rtn></rtn>	set vertical scale to half the current value
dssh <rtn></rtn>	stacked display the spectra horizontally
pl('all') pap page <rtn></rtn>	stacked plot the spectra as displayed with parameters

The optimum decoupling power is the *minimum* **dpwr** that achieves complete decoupling of the triplet, *i.e.*, results in the complete collapsing of the quartet to a singlet. This power is depending on the width of the signal being irradiated, *i.e.*, wider signal requires higher power.

 Set up the Homodecoupling Experiment

 mf(1,2) <rtn>

 wft <rtn>

 (NOTE: It is necessary that you do the wft now and not later.)

Set Homodecoupling Parameters	
homo='y' <rtn></rtn>	select homonuclear decoupling mode
dm='nny' <rtn></rtn>	set decoupler to "on" only during acquisition –
gives	decoupled spectra without NOE
gain='y' <rtn></rtn>	turn off autogain and set gain value to that selected
	by autogain during previous acquisition
NOTE: This has to be reset since you moved t	he fid from exp1 to exp2, above, again.
Set <i>dof</i> at 5 ppm as the control	
dscale <rtn></rtn>	display scale
LC (at 5 ppm, or type cr=5p <rtn>)</rtn>	place cursor at a frequency where there is no peaks within ± 1 ppm of that frequency
sd <rtn></rtn>	set decoupler offset frequency at the cursor position
Set <i>dof</i> for the quartet and put it into array	
Expand around the quartet, then place the	cursor at the center of the signal and type:
sda <rtn></rtn>	set decoupler offset frequency at the center of the quartet and put it into array

Set *dof* for the triplet and put it into array

Expand around the triplet, then place the cursor at the center of the signal and type:

nl <rtn> sda <rtn>

da <rtn>

Start the Homodecoupling Experiment dg <rtn> nt=4 <rtn> ga <rtn>

Enter text while waiting for acquisition to complete.

When acquisition is complete, save the data.

Phase and Display the Spectra ds(1) <rtn> f full aph <rtn> select nearest line set decoupler offset frequency at the triplet and put it into array display the dof array (should show the three decoupler offset frequencies set above at about -425, -1365, and -1930 Hz)

display dg parameter group set number of transients start acquisition (will wft and display each spectrum sequentially as it is completed)

display spectrum 1 (the control spectrum) display full spectrum to full screen and autophase

NOTE: Autophasing may not work properly due to the glitch at 5ppm. Manually phase the spectrum if necessary.

<u>Manual Phasing</u>

 LC 6:Phase
 enter the interactive phasing mode

 LC (click on a signal toward the left side of the spectrum about halfway vertically up the screen and adjust the phase by moving the mouse vertically while holding down the left button for coarse adjustment, or the right button for fine adjustment, of the zero-order or frequency-independent phase parameter *rp*)

 LC (click on a signal toward the right side of the spectrum and adjust the phase as above to change the first-order or frequency dependent phase parameter *lp*)

 LC 1:Box
 exit the interactive phasing mode

NOTE: if you can't seem to phase the spectrum manually, reset both zero order and first order phases to zero by typing "lp=0 < rtn>" and "rp=0 < rtn>", then phase the spectrum again.

wp=2p <rtn> sp=1p <rtn> vsadj <rtn> vs=vs/4 <rtn> dssa <rtn>

Stacked Plot the Spectra

pl(1,3) pscale page <rtn>

set width of plot set start of plot adjust vertical scale set vertical scale to 1/4 of the current value stacked display spectra vertically

stacked plot the spectra as displayed with scale