Basics of membrane-protein interactions using molecular dynamics with NAMD, VMD, and CHARMM-GUI

Michael J. Hallock and Taras V. Pogorelov

School of Chemical Sciences, University of Illinois at Urbana-Champaign

August 17, 2016, Edition 1.1

This tutorial is designed to introduce the preparation, modeling, and analysis of membrane-protein system with molecular dynamics (MD) using *NAMD*, VMD, and *CHARMM-GUI*. The system of interest will be the outer membrane phospholipase A from *E. coli* (OmpLA, PDB ID 1QD5, Snijder HJ, ..., Dijkstra BW, Nature, 401, 717, 1999). In a recent experimental study, the Fleming Lab (Johns Hopkins) used spontaneous folding of OmpLA into the membrane to design a hydrophobicity scale (Moon PC and Fleming KG, PNAS 108, 10174, 2011). Note: NAMD and VMD are developed at the NIH Center for Macromolecular Modeling hosted at the University of Illinois at Urbana-Champaign (http://www.ks.uiuc.edu). CHARMM-GUI is developed by the Im Lab at the University of Kansas (http://www.charmm-gui.org)

Estimated time to complete this tutorial is 1.5 hr.

Outline: we will use the SCS computer cluster, triton, to model the systems.

Step 1: prepare membrane-OmpLA structure using CHARMM-GUI web-server;

Step 2: download the system to local desktop computer;

Step 3: submit the system to the local computer cluster;

Step 4: when job is completed, analyze the results.

Software/Hardware

Triton: *NAMD2*. Personal computer: Terminal (Mac OSX) or xserver (e.g. *Xming* for a Windows machine), and CHARMM-GUI web server.

This tutorial can be completed on iMacs in the SCS VizLab (151 Noyes Lab) or with personal computers with Windows or Mac OS. Small modifications might be needed when used on other computers.

1. Prepare membrane-OmpLA structure

Open the CHARMM-GUI website (http://www.charmm-gui.org/) and go to Input Generator->Membrane Builder -> Bilayer Builder.

1.1 CHARMM-GUI: load, analyze, and position PDB

Protein/Membrane System

Membrane Only System

Figure 1 Protein-membrane window

Enter the PDB ID, keep OPM as the selection and proceed to the next step (Fig.1).

Membrane Builder

PDB Info	STEP 1	STEP 2	STE	P 3	STEP 4	STEP 5	STEP 6
Title		1QDS	5 PDB fr	om OP	M databa	se	
PDB ID		1QD5	5				
Туре		Prote	in				
Experime	ntal Metho	d X-RA	Y				
lodel/Cha	in Selecti	ion Opti	on:				
Iodel/Cha	in Select	ion Opti want to	on: select.	102			
Nodel/Cha Click on the Gelect Mode	in Selecti chains you I # 1 📀 (ion Opti want to a	on: select. all mode	lls?			
Iodel/Cha Click on the Select Mode	in Selecti chains you I # 1 📀	ion Opti want to s	on: select. all mode Resid	lls? lue ID			
Iodel/Cha Click on the Select Mode Type	in Selecti chains you I # 1 3 SEGID	ion Opti want to a Read a PDB ID	on: select. all mode Resid First	Is? Iue ID Last	Enginee	ered Residu	ies

Figure 2 Select models available in the PDB

Note that CHARMM-GUI automatically located the protein in the OPM database (<u>http://opm.phar.umich.edu/</u>), detected the residue IDs and engineered residues. OPM (Orientations of Proteins in Membranes) is a depository of precalculated membrane protein positions within a membrane and provides a good starting point. Here one can change the name of the segment to be used if needed. Leave the default selections intact for now. CHARMM-GUI analyzes of the provided PDB and offers possible modifications. Proceed to the next step: PDB Manipulation Optioins (Fig. 3)

Figure 3 PDB manipulations

CHARMM-GUI detected non-protein components (BOG and HOH). Leave cells blank (Fig. 3) so octyl glucoside (n-octyl- β -D-glucoside – BOG) and oxygen atoms of water (HOH) will be removed. Proceed to the next step.

DB Info STE	P1 ST	EP 2 ST	EP 3 ST	TEP 4 S	TEP 5	STEP 6					
Original PDB F	ile: 1	QD5.pdb (view struct	ure)							
Individual Chai	ns: 1	gd5_proa.p	db								
CHARMM Inpu	it: s	step1 pdbreader.inp									
CHARMM Out	put: s	tep1_pdbre	ader.out								
CHARMM PDE	3: 5	tep1_pdbre	ader.pdb (view struct	ure)						
CHARMM CRI): s	tep1_pdbre	ader.crd								
CHARMM PSF	: 5	tep1_pdbre	ader.psf								
XPLOR PSF:	5	tep1 pdbre	ader.xplor	.psf							
omputed Ene	rgy:										
Please beware of I	rgy:	uted energy is (CHARMM single	e-point energy	and is displa	yed to make sure all the coordinates are define					
Please beware of I ENER ENR: Eval# ENER INTERN: EVER FORSE:	rgy: that the compt ENERgy BONDS	uted energy is (Delta-E ANGLes Derth	CHARMM singl GRMS UREY-b DEF2D	e-point energy DIHEdrals	and is displa	nyed to make sure all the coordinates are define					
Please beware of I ENER ENR: Eval# ENER INTERN: ENER COSS: ENER EXTERN:	that the compu- BONDa CMAPs VDWaals	uted energy is (Delta-E ANGLes PMFID ELEC	CHARMM single GRMS UREY-b PMF2D HBONds	e-point energy DIHEdrals PRIMO ASP	and is displa IMPRope US	ayed to make sure all the coordinates are define are					
Please beware of I ENER ENR: Eval# ENER INTERN: ENER COSS: ENER EXTERN: ENER: 0	rgy: that the compu- ENERgy BONDa CMAPS VDNaals -999.72443	uled energy is (Delta-E ANGLes PMFID ELEC 0.00000	CHARMM singly GRMS UREY-b PMF2D HBONds 8.91762	e-point energy DIHEdrais PRIMO ASP	and is displa IMPRope US	ayed to make sure all the coordinates are define					
Please beware of Please beware of ENER ENR: Eval ENER EVal ENER EVal ENER CROSS: ENER CROSS: ENER CROSS:	rgy: that the computing BONDs CMAPS VDWaals -999.72443 313.10886 -55.79977	//ed energy is C Delta-E ANGLAE PMF1D ELEC 0.00000 328.8833 0.00000	CHARMM singli GRMS UREY-D PMF2D HB00ds 	Ppoint energy DIHEdrals PRIMD ASP 2453.33622 0.00000	and is displa IMPRope US 7.739	ayed to make sure all the coordinates are define 18 19 29 29					
Please beware of ENER ENR: Eval# ENER INTERN: ENER EXTERN: ENER CROSS: ENER CROSS: ENER CROSS: ENER CROSS: ENER CROSS: ENER CROSS: ENER CROSS: ENER EXTERN: ENER CROSS: ENER EXTERN:	rgy: that the computer ENERgy BONDs CHAPS VDWaal 313.16886 -55,79977 -433.55023	Aled energy is C Delta-E NNCLes PHF1D ELEC 0.00000 328.88339 0.00000 -3870.57225	CHARMM singli GRMS URET-D PMT-D HB008ds 8.91762 97.12205 0.00000 0.00000	DIHEdrals PRIMO ASP 2453.33822 0.00000 0.00000	IMPRope US 7.739 0.000	yyed to make sure all the coordinates are define re 23 00 					
Please beware of Please beware of ENER EXEL EVal ENER EXEL ENER EXERTS IN EXEL ENER EXERTS IN EXEL ENER EXERTS IN EXEL EXEL EXEL EXEL EXEL EXEL EXEL EXEL	rgy: that the compared BORDs BORDs CHAPs VUWaals -999,72443 313,10886 -55,79977 -433,55023 tions:	Ited energy is C Dalta-E NCT ELEC 0.00000 228.88339 0.00000 -3870.57225	CHARMM single GRMS URE-10 HB001ds 8,91752 37,12205 0,00000 0,00000	e-point energy DIHEdrals PRIMO ASP 2453.33822 0.00000 00000	IMPRope US 7.739 0.000	ayed to make sure all the coordinates are define TR TR TR TR TR TR TR TR TR TR					
Please beware of Please beware of EXER EVAL EXER EVA	rgy: that the computer BONDS CHAPS VDWaals.10886 -55,79977 -433.55023 tions: entation	Lited energy is C Delta-E ANCLA: PMF1D ELEC 0.00000 328.8833 0.00000 -3870.57225	CHARMM singl GRMS URE7-0 PM720 HB00Mds 8-91762 57.12205 0.00000 0.00000 This op	DIHEdrals DIHEdrals PRIMO ASP 2453.33622 0.00000 0.00000 0.00000	IMPRope US 7.739 0.000	ayed to make sure all the coordinates are define the the the the the the the th					

Figure 4 PDB orientation

CHARMM-GUI provides choice for protein orientation in the membrane. Keep the PDB orientation as a choice (Fig. 4) – this assumes the the Z-axis is aligned with the principal axis of inertia of the protein. Note other options. Proceed to the next step.

1.2 CHARMM-GUI: select lipids and water thickness. Cross sectional density will be displayed (not shown) as well as system size options (Fig. 5). Enter 50 Å as the initial estimate for the size of the cell (Fig. 5, left) and click the "Show the system info" button. The results of the estimate will be shown in the table (Fig. 5, right). We can keep the defult value of the water thickness at 17.5 Å.

System Size Determination Options:	Calculated Number of Lipids:				
Homogeneous Lipid	Lipid Type	Upperleaflet Number	Lowerleaflet Number		
Rectangular Currently, only CHARMM and NAMD support the hexagonal box) Length of 7 boost on:	Calculated X	Y System Siz	e: Lowerleaflet		
Water thickness 17.5 (Minimum water height on top and bottom of the system) Hydration number 50 (Number of water molecules per one lipid molecule) Hydration (w/w) % 50 (Percent ratio of Water/lipid weight)	Protein Area Lipid Area # of Lipids	1155.78 0 0	1264.83 0 0		
3. Length of XY based on: Ratios of lipid components	Total Area	1155.78	1264.83		
Numbers of lipid components	Protein X Exten Protein Y Exten	t 23.50 t 23.50			
Chength of X and Y: 50 (initial guess) (The system size along the X and Y must be the same)	Average Area	1210.30			
Figure 5 System size determination	B	34.79			
	No lipid was or lowerleaf	s selected in let.	upperleaflet		

Select lipids under the clickable triangles (Fig. 6): Build a membrane consisting of phosphatidylethanolamine (POPE) 90% and phosphatidylglycerol (POPG) 10%, which will be our model for the outer membrane of *E.coli*. Enter "90" in the upper and lower leaflet boxes for POPE, and "10" in the upper and lower leaflet boxes for POPG. As a reminder, PE is a zwitterionic (formally neutral) while PG is charged lipid. Hover over the links "Image" in the row of the chosen lipids and lipid structure will be shown. Click the "Show the system info" button to update.

Remark: for *E.coli* outer membrane composition see e.g., Lugtenberg EJJ & Peters R, BBA, 441, 38–47, 1976. Click again the "Show the system info" button. Observe that summary now has list of lipids (Fig. 6, right). Proceed to the next step.

▼ PE (phos	phatidy	ethanolamin	e) Lipids				Calculated N	umber of Lip	ids:
DLPE	0	12:0 / 12:0	[image]	0	0	60.8	Lipid Type	Upperleaflet	Lowerleaflet
DMPE	0	14:0 / 14:0	[image]	0	0	59.9		Number	Number
DPPE	0	16:0 / 16:0	[image]	0	0	59.0	POPE	27	27
DSPE	0	18:0 / 18:0	[Image]	0	0	58.8	POPG	3	3
PYPE	0	16:0 / 16:1	[Image]	0	0	58.8	1		
POPE	0	16:0 / 18:1	[Image]	9	9	58.8	Calculated X	Y System Siz	e:
▼ PG (phos	phatidy	lglycero) Lip	ids				2	Upperleaflet	Lowerleaflet
DLPG	-1	12:0 / 12:0	[Image]	0	0	57.2	Destain Area	4455 70	4004.00
DMPG	-1	14:0 / 14:0	[Image]	0	0	60.6	Protein Area	1155.78	1204.83
DPPG	-1	16:0 / 16:0	[Image]	0	0	63.0	Lipid Area # of Lipids	30	30
DSPG	-1	18:0 / 18:0	[Image]	0	0	63.0	Total Area	2929.38	3038.43
PSPG	-1	16:0 / 16:1	[image]	0	0	68.5			
POPG	-1	16:0 / 18:1	[Image]	1	1	62.0	Protein X Exten	t 23.50	
Figure	5 Sele	ect lipids	5				Protein Y Exten	t 23.50	
U							Average Area	2983.90	
							A	54.63	
							в	54.63	
							B The upperle lipids	54.63 aflet can ha	ive more

1.3 CHARMM-GUI: select ions

The system size summary will be displayed (not shown) as well as two choices for protein insertion into the membrane (Fig. 7, right). We will use the default Replacement method. As for the ions, we will use calcium ions for system neutralization and additional concentration. Select CaCl₂ as the salt of choice (Fig. 7, right). Proceed to the next step.

lembrane Builder			System Building Options:
			Insertion method Build system using insertion method
			Replacement method Build system using replacement method.
PDB Info STEP 1	STEP 2 STEP 3 STEP 4	STEP 5 STEP 6	Check lipid ring (and protein surface) penetration
			For this system, insertion method can not be used. Replacement method will be used instead
Oriented PDB:	step2_orient.pdb (view struct	ure)	Component Building Options:
System Size Input:	step3_size.inp		
System Size Output:	step3_size.out		O 0.15 M CaCl2 O (ion concentration) Calculate number of ions
System Size:	step3_size.str		Add neutralizing ions
Packing Simulation:	step3_packing.inp	Packing Simulation Input	17 positive ions and 21 negative ions will be generated.
	step3_packing.out	Packing Simulation Output	🛛 Ion Placing Method: Monte-Carlo
	crystal_image.str	Crystal Image	
	step3 packing pol.str	Packing lons	Figure 7 Ion selection
	step3 packing.pdb (view stru	Cture)Generated Packed System	č
		and the second	

1.4 CHARMM-GUI: system preparation

CHARMM-GUI reports on possible lipid penetrations of rings (not shown). This could be a problem that will not be resolved by minimization and the system has to be regenerated. Proceed to the next step to combine membrane components. This may take few minutes. If this step is not working the instructor will provide pre-calculated files.

PDB Info STEP 1	STEP 2 STEP 3 STEP	4 STEP 5 STEP 6	
Oriented PDB: Component Input: Component Output:	step2_orient.pdb (view stru step4_lipid.inp step4_lipid.out	ucture)	
Additional Waterbox:	step4_components.str step4.2_waterbox.inp step4.2_waterbox.out step4.2_waterbox.crd	Input file for additional water box inclusion Output file for additional water box inclusion CRD file for the additional water box	CCS JA
Additional Ion:	step4.3 ion.inp step4.3 ion.out step4.3 neg.crd step4.3 pos.crd	Input file for additional ion inclusion Output file for additional ion inclusion CRD file for the additional ion CRD file for the additional ion	
Component PDB:	step4_lipid.pdb (view struc	PDB file for the additional ion	and the second second

CHARMM-GUI will display the list of prepared files (Fig.8, left). Click the "view structure" link next to the Component PDB file link. A pop-up window will be displayed where one can visually inspect the structure (Fig. 8, right). Proceed to the next step to complete the assembly.

1.5 CHARMM-GUI: generate input files

The list of files prepared so far, as well as the system size, will be displayed (not shown). Select only NAMD for the Input Generation Options as shown on Fig. 9. Proceed to the next step to complete the preparation.

It may take some time to generate selected inputs.	
NAMD	
GROMACS	
OpenMM	
CHARMM/OpenMM	
Equilibration Options:	
P21 image transformation (only available for CHARMM)
CHARMM DOMDEC (only available for CHARMM)	
Generate grid information for PME FFT automatically	
Explicit grid information for PME FFT	
X Y Z	
NPT ensemble	
O NPAT ensemble	
NPgT ensemble	
Surface Tension 0 (dyne/cm)	
Temperature: 202.15 K	

Figure 9 Input files options.

1.6 CHARMM-GUI: input file download.

The updated list of all generated files will be displayed again (not shown). The coordinate file is named step5_assembly.pdb, while the structure/topology file is step5_assembly.psf. Click the "download .tgz" in the right top corner. CHARMM-GUI will also display suggested steps for the simulation (Fig. 10). To expedite the process for the purpose of this tutorial the instructor will provide a single input file.

Setup R Suggest (5 Cycl	estraints ed Equili es, 1 cyc	for Protei bration Sch le = 50 - 1	n and Lipid eme [Reduci 00 ps)	s (see @lip ng Force Co	type_restra nstants]	int.str)
	1 cycle	2 cycle	3 cycle	4 cycle	5 cycle	6 cycle
 BB	10.0	5.0	2.5	1.0	0.5	0.1
SC	5.0	2.5	1.0	0.5	0.1	0.0
wforce	2.5	2.5	1.0	0.5	0.1	0.0
tforce	2.5	2.5	1.0	0.5	0.1	0.0
mforce	2.5	2.5	1.0	0.5	0.1	0.0
ion	10.0	0.0	0.0	0.0	0.0	0.0
Iquilib	ration					
<pre>?o redu che unco equilib It is s steps i ** Note</pre>	ce the po orrelated ration. till poss f your sy : change	<pre>ssible prob system, 1 ible that y stem is ini "nstep" to</pre>	lem with th fs time-ste ou may need tially very reduce the	e numerical p is used o to use 1 f very unsta number of d	integratio nly for the s for the n ble (rare c vnamics ste	n with first-step ext equilib ases).

Figure 10 Suggested MD steps

2. Run simulation on cluster

We will run a short 200 ps simulation (1000 steps minimization followed by MD) using a single NAMD input file. Please note we are using a small number of lipids and a short simulation time for purposes of the tutorial only.

2.1 Prepare directory for submission

Copy* the template directory from provided template to your directory:

> cp -r /mnt/people/pogorelo/teaching/biophyscamp/namd_run_ompla_Clean .

You will need to uncompress the CHARMM-GUI directory (tar -xzf *tgz), change to the directory, and copy the coordinate and structure files step5_assembly.pdb/step5_assembly.psf to the template directory provided.

> cp charmm-gui/step5_assembly.p* ./namd_run_ompla_Clean

2.2 Submit job to queue

Hint: To preserve an intact copy of the starting directory for future use make a copy before you will submit a job:

> cp -r namd_run_ompla_Clean/ namd_run_ompla.lipid.1

Now change to the working directory >cd namd_run_ompla.lipid.1 and load NAMD module:

```
> module load namd2/multicore-2.11
```

Finally submit the job:

> submit-namd2 -n 32 -o namd_run_ompla.0.lipid.1.log namd_run_ompla.0.conf

2.3 Check queue and your job status.

Check the job status:

> qstat -u mylogin

To check how fast your job will progress run the following command that will search for all mentions of the word "Bench" in the .log file:

```
> grep Bench *log
```

The last entry will be the estimate for the speed of the NAMD simulation on the amount of cores you have chosen (32, if the previous command was used and in this case it is likely the speed is on the order of 0.11 day/ns or 1 hr/ns or \sim 26 ns/day). The cpu core vs atom count is an important consideration for selecting number of cores. Often most efficient NAMD runs are in the range of 300-1,000 atoms/core. Check the size of your system using Linux word count command. Should be \sim 24,000, hence you are running NAMD with 750 atoms/core:

> wc *pdb

*Note: at the SCS the file system is shared between the VizLab computers and SCS cluster. Thus one does not need to copy files to the cluster. When using other clusters please refer to the Linux tutorial (<u>http://computing.scs.illinois.edu/tutorials/</u>) for a reminder on how to copy files to remote machines.

3. Analyses of the simulation with VMD

When your job is completed, open VMD (NAMD's companion program produced by the NIH Center at the Beckman Institute, <u>http://www.ks.uiuc.edu/Research/vmd/</u>). Load first the trajectory file (.dcd) and second structure/topology file (.psf). Please note a detailed introduction to VMD is beyond the scope of this tutorial. To learn more please see the VMD Tutorial produced by the makers of the program (http://www.ks.uiuc.edu/Training/Tutorials/).

3.1 Visual inspection of the system: residues, lipids, and ions

When you load the system you will see the default representation (Fig. 11, left). Lets now introduce other representation that will demonstrate properties of the system (Fig. 11, right). Open from the Main window: Graphics -> Representations window and create additional seven representations (see Fig. 11 lower left). Please note the components of the representations and keywords.

	Graphic	al Representations		Comp	ponents of the representations
s	elected Molecul	e		1)) Style
0: step5_assem	bly.0.dcd	•		$\frac{1}{2}$) Color
Create Rep		Delete Rep		3)) Selection
Style	Color	Selection			
NewCartoon Licorice Licorice VDW VDW VDW VDW	Rame ResType ColorID 15 ColorID 3 ColorID 13 ColorID 6 ColorID 15 ColorID 3	an protein noh resname POPE noh resname POPG resname CAL resname CLA noh resname POPE and name P noh resname POPG and name P	•		
I	Se	elected Atoms			
protein					
Draw style Sele	ections Traject	ory Periodic			
Figure 11 VN	MD analysis				

In particular, Color:ResType color residues by the type (blue – positively charged, red – negatively charged, green – polar, and white – non-polar).

Questions/comments to discuss:

- 1) The OMP database placed membrane proteins using a particular energy function. What do you think is one of the main components of this function? Hint: the internal part of the membrane is hydrophobic.
- 2) Observe the locations of the charged residues (shown in red and blue): some are on the loops above the membrane and some are in the core of the membrane. Solvent accessible surface areas of the side chains can be measured with VMD (measure sasa). For a quick check, make a protein representation in VDW style and observe whether charged residues inside of the membrane are exposed.
- 3) Play the trajectory and observe the fluidity of the membrane and how ions are starting to interact with lipid. Although to capture lipid-ion interactions more accurately, we need a much longer simulation.
- 4) To quantitatively characterize the protein one can calculate: RMSD (root mean square deviation) and the Ramachandran plot (see Fig. 12). Try them from the Main window Extensions menu (RMSD Trajectory Tool and Ramachandran Plot).
- 5) The Moon and Fleming study (see reference to PNAS 2011 on page 1) used OmpLA point mutants at the position 210. Display it in VMD (resid 210) and comment on why this particular location was chosen.

***	Opti O				ł	l 0		Help		
orote	in		RMSC)	ALIG	iN				
Sel	Selection Modifiers Backbone Trace I noh Hist							Molecule 0 \$ Selection		
Equ	ivalent Atoms Dn/Off byres atom: CA ghts		Skip Sta	rame ref: rt: 0 urt: 0.0 Save: tra	Steps:	1.0	- -	Segid Resname Resid		
id	mol	avg	sd	min	max	num		Phi		
)	step5_assembly.0.133k.steps.dcd	2.505	0.603	0.477	3.607	272		Psi		
							•			
							•	Create 3-d Histogram		
							• • •	Delete 3-d Histogram		
1	Querth	2 504	0.602	0.477	3 607	272	nanel and Rama	handran nlot		

4. Summary

This tutorial covered basics of using *NAMD/VMD/CHARMM-GUI*: building membrane-protein systems, performing MD simulations on computer clusters and basic analysis on desktop computers.

5. Contact

If you found errors/typos or have suggestions or comments on material in this tutorial please contact us at the SCS Computer Center (pogorelo@illinois.edu and mhallock@illinois.edu). We are looking forward to hearing from you. <u>http://computing.scs.illinois.edu</u>